Dimension reduction for model-based clustering

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Based Approaches for Simultaneous Dimension Reduction and Clustering

High dimensional data are regularly generated from various sources. Thus subsets of data are usually concentrated in different subspaces. It is of interest to develop methods that achieve simultaneous dimension reduction and clustering. In this talk we will present a new solution based on a constrained version of mixture of factor analyzers. Our proposed technique imposes constraints on the und...

متن کامل

Model-based SIR for dimension reduction

This document can be viewed with any pdf reader. However, the animation in Figures 6 and 7 can only be viewed with a recent version of Adobe Reader.

متن کامل

Knowledge Driven Dimension Reduction for Clustering

As A.I. algorithms are applied to more complex domains that involve high dimensional data sets there is a need to more saliently represent the data. However, most dimension reduction approaches are driven by objective functions that may not or only partially suit the end users requirements. In this work, we show how to incorporate general-purpose domain expertise encoded as a graph into dimensi...

متن کامل

Mixture models for clustering and dimension reduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Comparing Dimension Reduction Techniques for Document Clustering

In this research, a systematic study is conducted of four dimension reduction techniques for the text clustering problem, using five benchmark data sets. Of the four methods -Independent Component Analysis (ICA), Latent Semantic Indexing (LSI), Document Frequency (DF) and Random Projection (RP) -ICA and LSI are clearly superior when the k-means clustering algorithm is applied, irrespective of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2009

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-009-9138-7